报告人:赵越
报告地点:腾讯会议App
报告时间:2020年10月22日星期六13:30-14:30
邀请人:高忆先
报告摘要:
This talk concerns the uniqueness and stability on the inverse problem of recovering the trajectory for a moving source in acoustics using partial boundary data measured in a finite time interval. Due to the strong Huygens' principle in three dimensions, we use the Fourier transform to transform the time domain problem into a frequency domain problem, to which techniques from inverse source problem by multi-frequency data can be applied. This problem finds important applications in industrial areas such as aviation and gesture recognition. In the beginning of this talk, I will give a brief review of the recent developments in inverse source problems in both frequency and time domain. In particular, the inverse moving source problem will be discussed.
会议网址:https://meeting.tencent.com/s/yv01YrKrJ928
会议ID:280 643 902
主讲人简介:
赵越, 2017年毕业于美国普渡大学获博士学位, 现任华中师范大学副教授。主要从事科学计算、数值分析和偏微分方程反问题等工作, 特别是光学、电磁学和波动方程中正反散射问题的研究。 曾获加拿大约克大学YSF博士后学术奖学金。相关工作发表在《 J. Math. Pures Appl.》、《 SIAM J. Appl. Math.》、《 J. Differential Equations》、《Inverse Problems》等国际权威杂志。