I will talk about the shifted analogue of the “Lie-Poisson” construction between L∞ algebroids and shifted derived Poisson manifolds via the example of a Lie algebroid pair (L, A). We show that the pullback of the normal bundle L/A over the dg manifold (A[1], dA) is an L∞ algebroid, thus the space totΩA(∧L/A) admits a canonical degree (+1) derived Poisson algebra structure with the wedge product as associative multiplication and the Chevalley-Eilenberg differential $d^{Bott}_A$ as the unary L∞ bracket. As a consequence, its Chevalley-Eilenberg hypercohomology admits a canonical Gerstenhaber algebra structure. If time were permitted, I will explain that this degree (+1) derived Poisson algebra structure can also be recovered from Fedosov dg Lie algebroid of this Lie pair and from the Dirac deformation of the associated Courant algebroid, respectively. This is a joint work with R.Bandiera, M.Stienon, and P.Xu.
会议网址:https://meeting.tencent.com/s/6vKYFFOzdNQQ
会议ID:713 614 896
会议密码:1014
陈酌,清华大学数学科学系副教授,博士生导师。2004年7月毕业于北京大学,获理学博士学位,2004年7月至2008年7月先后在首都师范大学和北京大学做博士后研究;2008年8月至2009年5月任美国宾州州立大学讲师;2009年5月至今在清华大学工作。主要从事辛几何,非线性李理论与交换代数、Poisson李群胚,李2群、广义复几何、扩展Poisson结构等方向的研究,在J. Diff. Geom.、J. Symp. Geom.、Comm. Math. Phys.、J. London. Math. Society、J. Algebra等著名杂志发表论文30余篇。主持国家自然科学基金面上项目、青年项目、北京市青年英才计划、中国博士后科学基金一等资助项目。先后多次应邀出席国内外学术会议并作大会报告。