当前位置: 首页 > 学术活动 > 正文
Eigenvalues of high-dimensional spatial-sign covariance matrices
时间:2020年08月11日 17:53 点击数:

报告人:王勤文

报告地点:腾讯会议

报告时间:2020年08月14日星期五14:00-15:00

邀请人:郑术蓉

报告摘要:

In this talk, we will investigate limiting spectral properties of high dimensional sample spatial-sign covariance matrices. The populations under study are general enough with possibly known or unknown location vectors, to include the popular independent components model and the family of elliptical distributions. The first result establishes that the empirical spectral distributions of high dimensional sample spatial-sign covariance matrices converge to a deterministic generalized Marcenko-Pastur law. The second result establishes the central limit theorems for a class of linear spectral statistics and we will show for data with known or unknown location vectors, the difference of their CLTs only lies in a mean shift.

会议ID:338 575 091

主讲人简介:

王勤文,青年副研究员,2015年获得浙江大学概率论与数理统计专业博士学位,之后在美国宾夕法尼亚大学从事博士后研究工作。主要研究方向为随机矩阵理论及其应用,高维统计推断。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn