当前位置: 首页 > 学术活动 > 正文
On the Lotka-Volterra competition system with dispersions depending on dynamical resource
时间:2020年08月11日 17:44 点击数:

报告人:王治安

报告地点:腾讯会议

报告时间:2020年8月17日星期一10:00-11:00

邀请人:张凯军,李敬宇

报告摘要:

we consider the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion。We show that the system has a unique global classical solution when initial datum is in some appropriate functional space.  By constructing appropriate Lyapunov functionals and using LaSalle's invariant principle, we prove that the solution converges to the co-existence steady state exponentially or competitive exclusion steady state algebraically as time tends to infinity in different parameter regimes. Our results reveal that once the resource species has temporal dynamics, the striking phenomenon “slower diffuser always prevails”for given spatially heterogeneous resource no longer exist and two competitors can coexist regardless of their diffusion rates and initial values. When the prey resource is spatially heterogeneous, we use numerical simulations to demonstrate that the phenomenon “slower diffuser always prevails”breaks down if the non-random dispersion strategy amongst competing species is employed.

会议网址:https://meeting.tencent.com/s/TSTy1atUDu7H

会议ID:737 774 319

主讲人简介:

香港理工大学教授,主要研究生物数学中的偏微分方程,目前在JMPA、CPDE、SIAM J. Math. Anal.、 SIAM . J. Appl. Math.、M3AS、 JDE 等杂志发表文章60 余篇,获得多项香港研究基金资助, 2019年获得香港数学会杰出青年奖。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn