当前位置: 首页 > 学术活动 > 正文
Maximal inequalities in noncommutative analysis
时间:2020年08月03日 16:27 点击数:

报告人:许全华

报告地点:腾讯会议

报告时间:2020年08月04日星期二16:00-17:00

邀请人:李勇、冀书关

报告摘要:

Maximal inequalities are of paramount importance in analysis. Here ``analysis" is understood in a wide sense and includes functional/harmonic analysis, ergodic theory and probability theory. Consider, for instance, the three fundamental examples: Hardy-Littlewood maximal function; Maximal ergodic function; Maximal martingale function. All three maximal functions satisfy the classical inequality, which is due to Hardy-Littlewood, Dunford-Schwartz and Doob.

We will consider in this survey talk the analogues of all these classical inequalities  in noncommutative analysis. Then the usual $L_p$-spaces are replaced by noncommutative $L_p$-spaces. The theory of noncommutative martingale/ergodic inequalities was remarkable developed in the last 20 years. Many classical results were successfully transferred to the noncommutative setting. This theory has fruitful interactions with operator spaces, quantum probablity  and noncommutative harmonic analysis. We will discuss some of these noncommutative results and explain certain substantial difficulties in proving them.

会议网址:https://meeting.tencent.com/s/KtTqKUuIpYoY

会议ID:432 855 673

会议密码:123456

主讲人简介:

许全华,现任哈尔滨工业大学数学研究院院长,法兰西大学研究院资深研究员,法国弗朗什-孔泰大学数学特级教授。许全华主要从事Banach空间几何学、算子空间、量子概率、非交换调和分析等方向的研究,是现代非交换鞅论的奠基者之一。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn