当前位置: 首页 > 学术活动 > 正文
Optimal decay rates of 3D compressible Euler equations with time-dependent damping
时间:2020年07月27日 12:27 点击数:

报告人:梅茗

报告地点:腾讯会议

报告时间:2020年07月31日星期五9:00-10:00

邀请人:张凯军、李敬宇

报告摘要:

In this talk, we consider the multi-dimensional compressible Euler equations with time-dependent damping of the form $-\frac{\mu}{(1+t)^\lambda}\rho\boldsymbol u$ in $\mathbb R^n$, where $n\ge2$, $\mu>0$, and $\lambda\in[-1,1)$. When $\lambda>0$ ( $\lambda<0$), the damping effect time-asymptotically gets weaker (stronger), which is called under-damping (over damping). We show the optimal decay estimates of the solutions in the under-damping and over-damping cases, respectively, and see how the under-damping effect influences the structure of the Euler system. The time-dependent damping affects essentially the structure of solutions to Euler equations. Different from the traditional view that the stronger damping usually makes the solutions decaying faster, here we recognize that the weaker damping with $0\le\lambda<1$ enhances the faster decay for the solutions, and the effect of the stronger damping with $-1\le \lambda <0$ reduces the decay of the solutions to be slower. The approach adopted for proof is the technical Fourier analysis and Green function method. This is a joint work with Shanming Ji.

会议网址:https://meeting.tencent.com/s/uKzd5zei6Zsm

会议ID:657 608 878

主讲人简介:

加拿大麦吉尔大学教授,国际知名偏微分方程学者,长白山学者讲座教授。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn