Let d be an integer, $W_d$ be the Witt algebra. For any admissible $W_d$-module P and any $gl_d$-module V, one can form a $W_d$-module F(P,V). Since $W_d$ has a natural subalgebra isomorphic to $sl_{d+1}$, we can view F(P,V) as an $sl_{d+1}$-module. Taking $P=\Omega({\lambda})$, the rank-1 U(h)-free $W_d$-module and V=V(a,b), the irreducible cuspidal module over $\gl_d$, we get special $\sl_{d+1}$-module $F({\lambda};a,b)=F(\Omega({\lambda}),V({a},b))$. We determine the necessary and sufficient conditions for the $\sl_{d+1}$-module $F({\lambda};a,b)$ to be irreducible. And for the reducible case, we constructed their proper submodules explicitly.
会议网址:https://meeting.tencent.com/s/JfyWdndF9vcC
会议ID:373 400 494
会议密码:0711
郭向前,郑州大学数学与统计学院教授,河南省青年骨干教师。2007年毕业于中科院数学所,获理学博士学位,2012年访问加拿大Wilfrid Laurier大学。主要研究领域为为李代数与表示论,在Trans. Amer. Math. Soc.、Commun. Contemp. Math.、J. Algebra等著名SCI杂志上发表学术论文40余篇。主持国家自然科学基金面上项目2项,青年项目1项。