This paper develops the existence and uniqueness of solutions to McKean-Vlasov stochastic differential equations (SDEs). One of the main novelties is the use of one-sided local Lipschitz condition on the drift and local Lipschitz condition on the diffusion coefficient both with respect to the state variable. For any neighborhood with radius $R$, the local Lipschitz constants of the drift and diffusion coefficients are of the orders $O(\log R)$ and $O(\sqrt{\log R})$, respectively. Owing to the distribution-dependent coefficients, standard techniques developed for classical SDEs are no longer applicable. New techniques including Euler-like approximation are developed to overcome the difficulties. Moreover, this paper establishes a sufficient condition for the $p$th moment exponential stability of McKean-Vlasov SDEs by using measure-dependent Lyapunov functions.
会议网址:https://meeting.tencent.com/s/MZy6icPq1uqr
会议ID:277 503 802
会议密码:123456
吴付科,教授,博士生导师。主要从事随机微分方程以及相关领域的研究,2011年入选教育部新世纪优秀人才支持计划,2012年入选华中科技大学“华中学者”,2014年获得基金委优秀青年基金资助,2015年获得湖北省自然科学二等奖,2017年获得英国皇家学会牛顿高级学者基金。