当前位置: 首页 > 学术活动 > 正文
Existence and Uniqueness of Solutions to McKean-Vlasov Stochastic Differential Equations under Local Lipschitz Conditions with respect to State Variables
时间:2020年07月05日 22:19 点击数:

报告人:吴付科

报告地点:腾讯会议

报告时间:2020年07月08日星期三14:00-15:00

邀请人:李勇、冀书关

报告摘要:

This paper develops the existence and uniqueness of solutions to McKean-Vlasov stochastic differential equations (SDEs). One of the main novelties is the use of one-sided local Lipschitz condition on the drift and local Lipschitz condition on the diffusion coefficient both with respect to the state variable. For any neighborhood with radius $R$, the local Lipschitz constants of the drift and diffusion coefficients are of the orders $O(\log R)$ and $O(\sqrt{\log R})$, respectively. Owing to the distribution-dependent coefficients, standard techniques developed for classical SDEs are no longer applicable. New techniques including Euler-like approximation are developed to overcome the difficulties. Moreover, this paper establishes a sufficient condition for the $p$th moment exponential stability of McKean-Vlasov SDEs by using measure-dependent Lyapunov functions.

会议网址:https://meeting.tencent.com/s/MZy6icPq1uqr

会议ID:277 503 802

会议密码:123456

 

主讲人简介:

吴付科,教授,博士生导师。主要从事随机微分方程以及相关领域的研究,2011年入选教育部新世纪优秀人才支持计划,2012年入选华中科技大学“华中学者”,2014年获得基金委优秀青年基金资助,2015年获得湖北省自然科学二等奖,2017年获得英国皇家学会牛顿高级学者基金。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn