当前位置: 首页 > 学术活动 > 正文
Dynamics of a class of weakly dissipative dynamical systems
时间:2020年07月02日 14:26 点击数:

报告人:黄建华

报告地点:腾讯会议

报告时间:2020年07月10日星期五09:30-10:30

邀请人:李晓月

报告摘要:

In this talk, we present some results about the Kordeweg-de Vries equation. Firstly, we prove the analytic radius does not decay faster than as time  goes to infinity. Then we present some new idea to prove the Chuehov-Lasicha quasi-stable estimates for the KdV equation on . The global attractor has a finite fractal dimension in the sharp space  whenever the force belongs to . For the high-order damped stochastic KdV equations with Brownian motion and Poisson jump processes, we prove the existence of the invariant measure, which is ergodic. This is a joint work with Ming Wang and Pengfei Xu.

会议网址:https://meeting.tencent.com/s/kZXhhLg0CVuZ

会议ID:894 215 098

主讲人简介:

黄建华,国防科技大学数学系教授,博士生导师,主要从事随机动力系统定性理论和非线性方程的行波解研究,曾获得国家教学成果二等奖和湖南省自然科学二等奖。在《J. Differential Equations》,《Discrete Contin. Dyn. Syst.》, 《SIAM J. Appl. Dyn. Syst.》,《Phys. D》等杂志发表论文100余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn