报告人:黄建华
报告地点:腾讯会议
报告时间:2020年07月10日星期五09:30-10:30
邀请人:李晓月
报告摘要:
In this talk, we present some results about the Kordeweg-de Vries equation. Firstly, we prove the analytic radius does not decay faster than as time goes to infinity. Then we present some new idea to prove the Chuehov-Lasicha quasi-stable estimates for the KdV equation on . The global attractor has a finite fractal dimension in the sharp space whenever the force belongs to . For the high-order damped stochastic KdV equations with Brownian motion and Poisson jump processes, we prove the existence of the invariant measure, which is ergodic. This is a joint work with Ming Wang and Pengfei Xu.
会议网址:https://meeting.tencent.com/s/kZXhhLg0CVuZ
会议ID:894 215 098
主讲人简介:
黄建华,国防科技大学数学系教授,博士生导师,主要从事随机动力系统定性理论和非线性方程的行波解研究,曾获得国家教学成果二等奖和湖南省自然科学二等奖。在《J. Differential Equations》,《Discrete Contin. Dyn. Syst.》, 《SIAM J. Appl. Dyn. Syst.》,《Phys. D》等杂志发表论文100余篇。