报告人:董崇英
报告地点:腾讯会议
报告时间:2020年07月04日星期六08:00-09:00
邀请人:陈良云
报告摘要:
Orbifold theory studies a vertex operator algebra V under the action of a finite automorphism group G. The main objective is to understand the module category of fixed point vertex operator subalgebra V^G. We show that the module category of V^G can be understood in terms of the third cohomology group of G with coefficients in the unit circle if V is a nice vertex operator algebra. The idea is to establish a connection between the V^G-module category and modular extensions of G-module category. On the other hand, the modular extensions of G-module categories have been classified using the twisted Drinfeld quantum doubles of G in category theory. This talk will explain how to use the results on modular extensions by Drinfeld-Gelaki- Nikshych- Ostrik and Lan-Kong-Wen to study the module category of V^G. This is a joint work with Richard Ng and Li Ren.
会议网址:https://meeting.tencent.com/s/cMv8jtLXWodZ
会议ID:528 225 436
会议密码:0704
主讲人简介:
董崇英,美国加州大学Santa Cruz分校终身教授、数学系原系主任,国家杰出青年基金获得者、“长江学者”讲座教授,国际上无限维李代数和顶点算子代数领域最杰出的数学家之一,多年来一直从事无穷维李代数和顶点算子代数研究,在顶点算子代数、Orbifold理论以及广义月光等方面的研究。在Acta Math.、Duke Math. J.、Adv. Math.、Comm. Math. Phys.等国际著名期刊发表论文100多篇,总引用超过3000次,其中包括fields奖获得者Drinfeld、Zelmanov和Borcherds以及著名数学家如Beilinson和Kac等人的重要引用。主持多项美国自然科学基金,并担任SCI杂志Algebra Colloquium主编、Science China Mathematics等SCI杂志编委。