We introduce and study a class of free boundary models with nonlocal diffusion, where local diffusion is used to describe the population dispersal, with the free boundary representing the spreading front of the species. We show that this nonlocal problem has a unique solution defined for all time, and then examine its long-time dynamical behavior when the growth function is of Fisher-KPP type. We prove that a spreading-vanishing dichotomy holds, though for the spreading-vanishing criteria significant differences arise from the well known local diffusion model. Finally, as an application, we consider the dynamics of a nonlocal epidemic model with free boundaries. This talk is based on joint works with Jia-Feng Cao (Lanzhou University of Technology), Yihong Du (University of New England), Fang Li (Sun Yat-sen University), Wenjie Ni (University of New England) and Meng Zhao (Lanzhou University).
会议网址:https://meeting.tencent.com/s/jjn6azkis36g
会议ID:601 389 836
会议密码:123456
李万同,二级教授,博导,兰州大学“萃英学者”特聘教授。现任兰州大学数学与统计学院院长,甘肃省高校应用数学与复杂系统省级重点实验室主任,中国数学会常务理事,甘肃省数学会理事长。研究方向为微分方程与动力系统。2013年应邀在第六届世界华人数学家大会做邀请报告。先后连续三次入选2014至2016年全球“最具影响力科学精英”榜单,并被授予“高被引科学家奖”。2009年入选甘肃省领军人才第一层次,2004年享受国务院政府特殊津贴并获“教育部宝钢教育基金会优秀教师奖”,2001年获教育部“高等学校青年教师奖”,并被甘肃省人民政府授予“甘肃省优秀专家”。先后主持国家自然科学基金重点及面上项目7项,参加重点项目1项。合作在Marcel Dekker出版社《纯粹数学与应用数学专著系列》第267卷出版英文专著一部,先后在《TAMS》、《JMPA》、《SIAM JMA》、《JDE》等期刊发表SCI论文百余篇,被SCI引用4400余次。获甘肃省自然科学一等奖1项、二等奖2项。