There is a natural question from the early days of topology: Given two closed smooth manifolds and , when does an isomorphism of integral cohomology rings imply that and are homeomorphic or even diffeomorphic? Generally, cohomological rigidity does not hold, such as Poincare homology sphere, three dimensional lens spaces, Milnor's exotic spheres and Donaldson's four-dimensional manifolds. In this talk, I will introduce our recent result about this problem. We prove that, for two classes of manifolds arising from simple polytopes: moment-angle manifolds and toric manifolds (projective toric varieties) are cohomological rigid whenever the polytopes satisfy a combinatorial condition.
会议网址:https://meeting.tencent.com/s/piEmcndThHEI
会议ID:779 725 016
范飞飞,华南师范大学特聘研究员。2015年于南开大学取得博士学位,2015年7月至2017年8月在中科院数学所做博士后研究,2017年8月-2020年5月受聘为中山大学特聘研究员。目前主要的研究兴趣是环面拓扑,且取得了一些突出的成果,例如:证明了环面拓扑中两类流形的上同调刚性;证明了在Fano多面体上定义的moment-angle流形具有正Ricci曲率;用代数拓扑的方法证明了一类单纯球满足组合数学中的g-猜想等等。