当前位置: 首页 > 学术活动 > 正文
Localization of eta-invariant
时间:2020年06月18日 08:47 点击数:

报告人:刘博

报告地点:腾讯会议

报告时间:2020年06月22日星期一15:30-16:30

邀请人:裴东河 孔令令

报告摘要:

The famous Atiyah-Singer index theorem announced in 1963 computed the index of the elliptic operator, which is defined analytically, in a topological way. In 1968, Atiyah and Segal established a localization formula for the equivariant index which computes the equivariant index via the contribution of the fixed point sets of the group action. It is natural to ask if the localization property holds for the more complex spectral invariants, e.g., eta-invariant.

The eta-invariant was introduced in the 1970's as the boundary contribution of index theorem for compact manifolds with boundary. It is formally equal to the number of positive eigenvalues of the Dirac operator minus the number of its negative eigenvalues and has many applications in geometry, topology, number theory and theoretical physics. It is not computable in a local way and not a topological invariant.

In this talk, we will establish a version of localization formula for equivariant eta-invariants by using differential K-theory, a new research field in this century.

会议网址:https://meeting.tencent.com/s/hOAu27vuKXuO

会议ID:367 411 446

主讲人简介:

刘博,华东师范大学紫江青年学者。2007年本科毕业于中国科学技术大学数学系,2013年在南开大学陈省身数学研究所获得博士学位,师从张伟平院士;2014年到2016年,先后在德国科隆大学与德国柏林洪堡大学从事博士后研究。2017年入职华东师范大学。主要研究方向为流形上的整体分析,Atiyah-Singer 指标理论与微分K理论。 其研究成果发表在Invent. Math.、Trans. Amer. Math. Soc.、Math. Z. 等国际期刊上。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn