Dynamical systems arising in biophysics are often subject to random fluctuations. The noisy fluctuations may be Gaussian or non-Gaussian, which are modeled by Brownian motion or α-stable Levy motion, respectively. Non-Gaussianity of the noise manifests as nonlocality at a “macroscopic” level. Stochastic dynamical systems with non-Gaussian noise (modeled by α-stable Levy motion) have attracted a lot of attention recently. The non-Gaussianity index α is a significant indicator for various dynamical behaviors.
Transition phenomena are special events for evolution from one metastable state to another in stochastic dynamical systems, caused by the interaction between nonlinearity and uncertainty. Examples for such events are phase transition, pattern change, gene transcription, climate change, abrupt change, extreme transition, and other rare events. The most probable transition pathways are the maximal likely (in the sense of optimizing a probability or an action functional) trajectory between metastable states.
The speaker will present recent work on analyzing and computing the most probable transition pathways for stochastic dynamical systems, in the context of the Onsager-Machlup action functionals.
会议网址:https://zoom.us/j/5066356571?pwd=enlBUmlSNjZSeXhreWpWcjZUUFhjdz09
会议ID:506 635 6571
会议密码:123456
段金桥,美国伊利诺理工学院(Illinois Institute of Technology)教授,随机动力系统与非线性动力系统实验室主任,华中科技大学数学中心主任。主要研究方向为随机动力系统,非线性动力系统,随机偏微分方程,以及数学与其它学科的交叉研究。
段金桥教授为国际知名的随机分析专家,曾任美国国家纯粹与应用数学所副所长(Institute for Pure and Applied Mathematics),曾获得欧洲地球物理学会青年科学家论文奖,是中国科学院海外杰出学者基金获得者、国家自然科学基金委杰出青年基金(B类)获得者。在世界数学一流杂志上发表多篇研究论文,多次应邀在重要的国际学术会议上作大会报告. 现任国际著名学术期刊Stochastics and Dynamics(随机与动力学)杂志管理编辑、Interdisciplinary Mathematical Sciences(“跨学科应用数学丛书”)主编。