当前位置: 首页 > 学术活动 > 正文
Recursive linearization method for inverse medium scattering problems with complex mixture Gaussian error learning
时间:2020年06月04日 10:53 点击数:

报告人:贾骏雄

报告地点:腾讯会议

报告时间:2020年06月05日星期五14:00-15:00

邀请人:刁怀安

报告摘要:

This talk is concerned with the numerical errors appeared in the calculation of inverse medium scattering problems (IMSP). Optimization based iterative methods are widely employed to solve IMSP, which are computationally intensive due to a series of Helmholtz equations need to be solved numerically. Hence, rough approximations of Helmholtz equations can significantly speed up the iterative procedure. However, rough approximations will lead to instability and inaccurate estimation. Inspired by mixture Gaussian error construction used widely in the machine learning community, we model

numerical errors brought by rough forward solver as some complex mixture Gaussian (CMG) random variables. Based on this assumption, a new nonlinear optimization problem is derived by using infinite-dimensional Bayes inverse method. Then, we generalize the real valued expectation-maximization (EM) algorithm to our complex valued case to learn parameters in the CMG distribution. Next, we generalize the recursive linearization method (RLM) to a new iterative method named as mixture Gaussian recursive linearization method (MGRLM) which consists of two stages: 1) learn CMG; 2) solve IMSP. Through the learning stage, numerical errors and some prior knowledge of the true scatterer have been incorporated into the proposed optimization problem. Hence, both the convergence speed and the resolution of the obtained result can be enhanced in the second stage. Finally, we provide two numerical examples to illustrate the effectiveness of the proposed method.

会议网址:https://meeting.tencent.com/s/t5nHElvj56uh

会议ID:514 303 267

会议密码:202006

主讲人简介:

贾骏雄博士2015年毕业于西安交通大学且于同年留校任教,2017年聘为西安交通大学数学学院副教授,主要研究领域为反问题的贝叶斯推断方法。主持国家自然科学基金青年、面上项目各一项,2017年获得陕西省优秀博士学位论文奖、陕西省数学会优秀论文奖,2018年获西安交通大学第四届十大学术新人奖,2019年作为第二获奖人获得陕西省高等学校科学技术二等奖。在Inverse Probl., J. Funct. Anal., Inverse Probl. Imag., J. Appl. Geophys., J. Differential Equations等国际著名期刊上共发表论文26篇(2018年发表于Inverse Probl.上关于分数阶方程贝叶斯反演的研究被选为编辑推荐的亮点文章)。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn