当前位置: 首页 > 学术活动 > 正文
Stability Results for Symmetric Periodic Orbits of the Elliptic Sitnikov Problem
时间:2020年05月31日 21:27 点击数:

报告人:章梅荣

报告地点:腾讯会议app

报告时间:2020年06月03日星期三10:00-11:00

邀请人:李勇、冀书关

报告摘要:

The (circular and elliptic) Sitnikov problems $(S_0)$ and $(S_e)$ are the simplest restricted 3-body problem. A lot of nonconstant periodic and oscillatory solutions have been constructed in literature using different approaches.

We are concerned with the stability/instability of the families $\phi_m(t,e)$ and $\varphi_m(t,e)$ of symmetric (either odd or even in time), $2m\pi$-periodic solutions of $(S_e)$, emanated from those of $(S_0)$. Based on the theory for Hill's equations, we will develop some stability criteria for the eccentricity $e$ small.

The application to $(S_e)$ will yield the instability of odd solutions $\phi_{2n}(t,e)$, and the stability of even solutions $\varphi_{4n}(t,e)$ and the instability of even solutions $\varphi_{4n-2}(t,e)$. These analytical results will also be compared with the qualitative results deduced from the Moser twist theorem and the KAM scenario.

This is a joint work with X. Cen, X. Cheng and C. Liu.

会议网址:https://meeting.tencent.com/s/6Rq0eBkKo9OP

会议ID:479 201 857

会议密码:123456

主讲人简介:

章梅荣,清华大学数学科学系教授、博士生导师、国家杰出青年科学基金获得者。1979年至1989年在北京大学数学系学习,先后获得学士、硕士、博士学位,1990年起在清华大学数学科学系任教。主要从事微分方程和动力系统研究,先后承担、主持十多项国家级科研项目,包括国家自然科学基金重点项目,科技部973项目,教育部博士点基金和人才支持计划,国家外专局的引智计划等,目前正在主持基金委重大研究计划项目《动力系统的拓扑性质与遍历性》。2003年获得国家杰出青年科学基金,还获得过教育部“高校青年教师奖”和“茅以升北京青年科技奖”等。先后担任全国政协委员,北京市学位委员会委员,清华大学校务委员会、学位委员会、教授提名委员会委员等,目前担任清华大学数学科学系学术委员会副主任、清华大学周培源应用数学研究中心副主任,也是《应用数学学报》等五个国内外数学杂志的编委。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn