In this talk, we discuss stage-structured predator-prey modeling from types of constant delay to that of state-dependent delay (hereafter SDTD). For the SDTD case, we consider the model with general nonlinear type of function response. First, for a large class of commonly used types of functional responses, including Holling types I, II and III, Beddington -DeAngelis-type (hereafter BD-type), etc, it is shown that the predator coexists with prey permanently iff the predator's net reproduction number is larger than one unit. Secondly, the local stability of equilibria of the model are also discussed. Finally, for the special case of BD-type functional response, it is shown that if the system is permanent, that the derivative of SDTD on the state is small enough and that the predator interference is large enough, then the coexistence equilibrium is globally asymptotically stable.
刘胜强,2002年于中国科学院数学研究所获博士学位,导师为陈兰荪研究员,2003年7月-2004年12月在芬兰Turku大学从事博士后工作,2005年6月—2007年1月任厦门大学数学科学学院副教授,2007年4月至2019年10月任哈尔滨工业大学教授、博士生导师,自2019年11月起任天津工业大学数学科学学院教授、博士生导师。现任中国数学会生物数学专业委员会常务理事兼副秘书长,学术期刊《Math.Biosc.Eng.》及《生物数学学报》编委。研究领域为生物数学、动力系统。主持完成国家自然科学基金2项、正在承担1项,出版专著1本、参与编著2本,先后指导博士生10人,硕士生15人,在SIAM Journal on Applied Mathematics、Journal of Differential Equations、Bulletin of Mathematical Biology、Mathematical Biosciences等应用数学领域知名学术期刊上发表SCI论文70余篇。