Let K be a commutative algebra over a field and A=K[x_1,x_2,…,x_n] the polynomial ring over K. It is proved that the discriminant of A over the symmetric polynomials is the Vandermonde determinant on x_1,x_2,…,x_n to the power n!. This gives an affirmative answer to a question posed by Gaddis, Kirkman and Moore. This work is joint with Yueyue Li.
杜现昆,吉林大学数学学院教授、博士生导师。主要从事环的结构理论与多项式自同构的研究,在国内外学术期刊上发表论文40余篇,主持国家自然科学基金项目3项,并担任《吉林大学学报》、《Comm. Math. Res. (原东北数学)》编委。