报告人:张强
报告地点:数学与统计学院317室
报告时间:2019年10月17日星期四15:30-16:30
邀请人:陈亮
报告摘要:
A compact polyhedron $X$ is said to have the \emph{Bounded Index Property (BIP)} if there is an integer $\B>0$ such that for any map $f: X\rightarrow X$ and any fixed point class $\F$ of $f$, the index $|\ind(f,\F)|\leq \B$. $X$ has the \emph{Bounded Index Property for Homeomorphisms (BIPH)} if there is such a bound for all homeomorphisms $f:X\rightarrow X$.
In 1998, Jiang Boju gave the following question: Does every compact aspherical polyhedron $X$ (i.e. $\pi_i(X)=0$ for all $i>1$) have BIP or BIPH? In this talk, we will survey the progress on this question.
主讲人简介:
张强,男,2008年获北京大学博士学位,现任职于西安交通大学数学与统计学院。主要从事低维拓扑与几何群论的研究,相关工作发表在Algebraic and Geometric Topology、Journal of Algebra、International Journal of Algebra and Computation、Topology and its Applications及Acta Mathematica Sinica(English Series)等国内外期刊上。