报告人:郭坤宇
报告地点:综合教学楼334教室
报告时间:2019年07月20星期六16:00-17:00
邀请人:段永江
报告摘要:
本报告从泛函分析中的Baire纲定理谈起,比较Baire纲理论和测度论,并用Baire纲理论处理分析数学中几个经典问题,展示泛函分析的精神和方法。
主讲人简介:
郭坤宇,复旦大学数学科学学院教授,国家杰出青年基金获得者,长江学者特聘教授,曾任复旦大学数学科学学院院长。在Hilbert模的几何分析、Toeplitz算子和Toeplitz代数方面, 做了大量深入的研究,取得了系列重要突破。在Hilbert模几何分析方面,系统地建立了Hilbert模的亏格算子、亏格函数和特征空间理论,解决了Hilbert模领域中多个重要问题和猜测,其中包括“低维p-本质正规猜测”等。在Hilbert模的分类方面取得重要进展,完全分类了多项式型的解析Hilbert模。 在Toeplitz算子分析方面, 对著名的“Toeplitz零积问题”取得重要突破,被美国数学会评论认为是多年来的一个主要尝试。这些工作,被他人广泛引用和跟踪研究,其发展的方法、思想、技巧被国外数学家称为 “郭方法”(methods of Guo,idea of Guo), “郭引理”(Guo’s Lemma)”等。 在J. Reine Angew. Math、JFA、Math. Ann.等杂志发表系列高水平文章,在Math Research Notes、Lecture Notes in Math出版专著各一部。2003年、2016年分别获得上海市科技进步奖一等奖(第一完成人)和上海市自然科学奖一等奖(第一完成人)。