当前位置: 首页 > 学术活动 > 正文
A Moving Average Cholesky Factor Model in Covariance Modeling for Longitudinal Data
时间:2011年10月26日 00:00 点击数:

报告人:Leng Chenlei

报告地点:数学与统计学院104室

报告时间:2011年10月28日(星期五)10:00

邀请人:

报告摘要:

We propose new regression models for parameterising covariance structures in longitudinal data analysis. Using a novel Cholesky factor, the entries in this decomposition have a moving average and log innovation interpretation and are modeled as linear functions of covariates. We propose efficient maximum likelihood estimates for joint mean-covariance analysis based on this decomposition and derive the asymptotic distributions of the coefficient estimates. Furthermore, we study a local search algorithm, computationally more efficient than traditional all subset selection, based on BIC for model selection, and show its model selection consistency. Thus, a conjecture of Pan and Mackenzie (2003) is verified. We demonstrate the finite-sample performance of the proposed method via analysis of the data on CD4 trajectories and through simulations. This is a joint work with Weiping Zhang from USTC.

主讲人简介:

新加坡国立大学概率与统计系

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237