当前位置: 首页 > 学术活动 > 正文
Stability of non-constant equilibrium solutions for Euler-Maxwell equations
时间:2014年08月04日 00:00 点击数:

报告人:彭跃军

报告地点:数学与统计学院615室

报告时间:2014年08月12日星期二15:30-16:30

邀请人:

报告摘要:

We consider Euler-Maxwell equations arising in the modeling of magnetized plasmas. For such equations steady equilibrium states with zero velocity exist. For small initial data, we show global existence of smooth solutions with convergence toward the steady states as the time goes to infinity. In this problem, the main ingredient is an induction argument on the order of the derivatives of solutions in energy estimates. It is also efficient to obtain the global stability of solutions with exponential decay near steady states for Euler-Poisson equations.

主讲人简介:

彭跃军,法国克莱蒙费朗第二大学(帕斯卡)数学教授,国际知名偏微分方程专家。复旦大学数学本科与硕士毕业,法国数学博士。主要研究领域涉及双曲守恒律方程组的弱熵解、拟线性双曲方程组的光滑解、等离子体和半导体科学中流体动力学模型的渐近极限以及偏微分方程初始层、边界层的分析。在Annales IHP Analyse Non Linéaire, J. Math. Pures Appl., SIAM J. Math. Anal., J. Diff. Equations, Comm. Part. Diff. Equations 等国际一流期刊上发表70余篇SCI论文。著有《Some Problems on Nonlinear Hyperbolic Equations and Applications》,由World Scientific Publishing Company 出版。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237