We discuss linear recurrences of Eulerian type of the form P_n(v) = (a(v)n+c(v))P_{n-1}(v) +b(v)(1-v)P_{n-1}'(v) (n > 0), with P_0(v) given, where a(v), b(v) and c(v) are in most cases polynomials of low degree. We characterize the various limit laws of the coefficients of P_n(v) for large n using the method of moments and analytic combinatorial tools under varying a(v), b(v) and c(v).We apply our results to more than two hundreds of concrete examples that we collected from the literature and from Sloane's Online Encyclopedia of Integer Sequences. Not only most of the limit results are new, but they are unified in the same framework. The limit laws we worked out include normal, half-normal, Rayleigh, beta, Poisson,negative binomial, Mittag-Leffler, Bernoulli, etc., showing the richness and diversity of such a simple recurrence scheme, as well as the generality and power of the approaches used.
黄显贵教授1989年毕业于台湾国立清华大学,后于1994年获得法国著名的巴黎综合理工大学(Ecole Polytechnique)博士学位。毕业后回到台湾中央研究院统计科学研究所就职。就职后,从助研究员,副研究员依次于2002年提升至正研究员(正教授)。2001-2002,2006-2009年两度担任统计所副所长。2013年起担任所杰出研究家(distinguished research Fellow)。他的研究兴趣包括应用概率,算法分析以及渐进分析。取得了一系列杰出研究成果。至今已在国际重要杂志上发表学术论文80余篇。基于他的杰出研究成果,他十余次获得国科会(相当于国家自然科学基金)杰出研究奖,以及某些国际研究奖。