当前位置: 首页 > 学术活动 > 正文
A decoupled and positivity-preserving DDFV scheme for radiation diffusion problems on general polygonal meshes
时间:2019年05月21日 14:46 点击数:

报告人:邬吉明

报告地点:数学与统计学院104室

报告时间:2019年05月25日星期六10:30-11:30

邀请人:

报告摘要:

We suggest a new positivity-preserving discrete duality finite volume (DDFV) scheme for anisotropic diffusion problems on general polygonal meshes. Like existing DDFV schemes, this scheme is built on the primary and dual meshes and has finite volume (FV) equations for both vertex and cell-centered unknowns. The transpose of the coefficient matrix for the FV equations of the cell-centered unknowns is an M-matrix while that for the vertex unknowns is not an M-matrix but a symmetric and positive definite matrix. By employing a certain truncation technique for the vertex unknowns, the positivity-preserving property for both categories of unknowns is guaranteed. Local conservation is strictly maintained for the cell-centered unknowns and conditionally maintained for the vertex unknowns. Since the FV equations of the vertex unknowns can be solved independently, the two sets of FV equations are decoupled. In contrast to existing nonlinear positivity-preserving schemes, the new scheme requires no nonlinear iterations for linear problems. For nonlinear problems, the positivity-preserving mechanism of the new scheme is decoupled from its nonlinear iteration so that any nonlinear solver can be adopted. Moreover, the positivity of the discrete solution is proved and the well-posedness is analyzed rigorously for linear problems. In numerical experiments, the new scheme is examined extensively and compared with two positivity-preserving cell-centered schemes and a nonlinear DDFV scheme. Numerical results show that the present DDFV scheme achieves second-order accuracy and preserves the positivity of the solution for heterogeneous and anisotropic problems on severely distorted grids. The high efficiency of the scheme is also demonstrated by the comparison of computation time and number of nonlinear iterations。

主讲人简介:

邬吉明,北京应用物理与计算数学研究所研究员,博士生导师。1999 年毕业于中科院计算数学所,获理学博士学位。1999年7 月到北京应用物理与计算数学研究所做博士后,2001 年5 月出站后留所工作,先后在计算物理国防科技重点实验室、磁驱动聚变研究中心、邓稼先创新研究中心等部门从事辐射磁流体力学数值模拟研究。研究兴趣包括辐射扩散方程有限体积方法、超奇异积分计算、自然边界元、区域分解、网格生成等。在SIAM J. Sci. Comput.、 Numer. Math.、 J. Comput. Phys.、Comput. Methods Appl. Mech. Engrg.、M2AN、IMA J. Numer. Anal.、《计算数学》等国内外学术刊物上发表论文70多篇,其中40 多篇为SCI 收录期刊论文。作为负责人承担国家自然科学基金4项,参加国家自然基金重点项目1项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237