当前位置: 首页 > 学术活动 > 正文
The heat flow for harmonic maps and applications
时间:2017年10月09日 14:22 点击数:

报告人:洪敏纯

报告地点:数学与统计学院6楼大应用数学实验室

报告时间:2017年10月20日星期五16:00-17:00

邀请人:

报告摘要:

In 1964, Eells and Sampson asked whether  a given smooth map   can be deformed to a harmonic map  in its homotopy class . When $n=2$, Lemaire   and Schoen-Yau established  existence results of harmonic maps by minimizing the Dirichet energy  in a homotopy class under the  topological condition $\pi_2(N)=0$.   Sacks and Uhlenbeck established many existence results  of minimizing harmonic maps in their homotopy classes by introducing the `Sacks-Uhlenbeck functional'. To solve the   Eells-Sampson question,  it is important to establish  global existence of a solution of the harmonic map flow. Struwe proved  the existence of a unique global weak solution  to the harmonic map flow.   Chang, Ding and Ye constructed an example that the harmonic map flow  blows up at finite time.  Ding and Tian established the energy identity of the harmonic map flow at each blow-up time.  

When $n>2$, we also introduce some new result on a  $n$-harmonic map flow from an n-dimensional closed Riemannian manifold to another closed  Riemannian manifold.

Finally, we mention some applications of the n-harmonic map flow to minimizing the n-energy functional and the Dirichlet energy functional in a homotopy class.

主讲人简介:

洪敏纯,澳大利亚昆士兰大学数学教授。国际著名偏微分方程专家。东北师范大学大应用数学实验室学术委员会委员。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237