Fast Low Rank Reconstruction via Optimization on Manifold: Algorithms, Theory and Applications
报告人:魏轲
报告地点:数学与统计学院501室
报告时间:2018年05月31日星期四09:00-10:00
邀请人:
报告摘要:
Low rank models exist in many applications, ranging from signal processing to data analysis. Typical examples include low rank matrix completion and spectrally sparse signal reconstruction. We will present a class of computationally efficient algorithms that are universally applicable for different low rank reconstruction problems. The algorithms are developed by exploiting the low dimensional structure of low rank matrix manifold. Theoretical recovery guarantees will be presented for the proposed algorithms under certain random models, showing that the sampling complexity is essentially proportional to the intrinsic dimension of the problems rather the ambient dimension. Extensive numerical experiments demonstrate the efficacy of the algorithms and extensions to phase retrieval and low rank matrices demixing will be briefly discussed.
主讲人简介:
魏轲,复旦大学大数据学院青年研究员,2014年获得牛津大学博士学位,之后在香港科技大学(2014-2015)和加州大学戴维斯分校(2015-2017)从事博士后研究。主要研究方向为信号与数据处理问题中的理论分析以及快速算法的设计、数值优化和数值线性代数,其研究成果已发表在SISC、SIMAX、SIOPT, ACHA和IEEE TSP等顶级期刊上。