当前位置: 首页 > 学术活动 > 正文
Regularity of the extremal solution for some elliptic problems
时间:2011年04月19日 00:00 点击数:

报告人:周风

报告地点:数学与统计学院501室

报告时间:2011年04月21日星期四 16:00

邀请人:

报告摘要:

主讲人简介:

In this talk, we will investigate the regularity of extremal solution $u^*$ for semilinear elliptic equation $-\triangle u+c(x)\cdot\nabla u=\lambda f(u)$ on a bounded smooth domain of $\mathbb{R}^n$ with Dirichlet boundary condition. Here $f$ is a positive nondecreasing convex function, exploding at a finite value $a\in (0, \infty)$. We show that the extremal solution is regular in low dimensional case. In articular, we prove that for the radial case, all extremal solutions are regular in dimension two. We recall also some results on the regularity of the extremal solutions for the superlinear case. This is a joint work with X.Luo and D.Ye.

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237