报告人:李毅
报告地点:数学与统计学院515 教室
报告时间:2019年05月17日星期五13:30-14:30
邀请人:
报告摘要:
In this talk, I will introduce state structures in mathematical models for infectious diseases. The state is a measure of infectivity of an infected individual in epidemic models or the intensity of viral replications in an infected cell for in-host models. In modelling, a state structure can be either discrete or continuous.In a discrete state structure, a model is described by a large system of coupled ordinary differential equations (ODEs). The complexity of the system often poses a serious challenge for the analysis of system dynamics. I will show how such a complex system can be viewed as a dynamical system defined on a transmission-transfer network (digraph), and how a graph-theoretic approach to Lyapunov functions developed by Guo-Li-Shuai can be applied to rigorously establish the global dynamics.In a continuous state structure, the model gives rise to a system of nonlinear integro-differential equations with a nonlocal term. The mathematical challenges for such a system include a lack of compactness of the associated nonlinear semigroup. The well-posedness and dissipativity of the semigroup is established by directly verifying the asymptotic smoothness. An equivalent principal spectral condition between the next-generation operator and the linearized operator allows us to link the basic reproduction number R0 to a threshold condition for the stability of the disease-free equilibrium. The proof of the global stability of the endemic equilibrium utilizes a Lyapunov function whose construction is informed by the graph-theoretic approach in the discrete case.
主讲人简介:
Michael Yi Li(李毅),加拿大University of Alberta数学与统计科学系教授、应用数学研究所所长。李毅教授1980-1987年就读于吉林大学数学系并先后获学士和硕士学位,1987-1993年就读于加拿大阿尔伯塔大学并获博士学位,于1994年在加拿大阿尔伯塔大学获得博士学位,后在美国佐治亚理工学院读博士后, 2000年始在加拿大阿尔伯塔大学先后任副教授,2004年始任教授。主要从事微分方程定性理论、动力系统和传染病动力学的研究,其研究得到了国家科学基金会(美国)、NSELC、加拿大创新基金会(CFI)、NCE-MITACS、MPrimy、PIMS和阿尔伯塔省的资助。李毅教授对非线性动力学的重要贡献包括证明全局稳定性的有效数学工具,即Li-Muldowney理论的提出,以及构造大系统Lyapunov函数的图论方法,而且该方法已经被应用在科学和工程的许多领域。近年来,李毅教授致力于将数学建模与公共卫生研究相结合,领导了多个关于艾滋病抗逆转录病毒抗性的跨学科建模项目,为传染病的预防和控制提供了理论基础。