当前位置: 首页 > 学术活动 > 正文
Lanczos method for large-scale quaternion singular value decomposition
时间:2019年05月21日 14:59 点击数:

报告人:贾志刚

报告地点:数学与统计学院104室

报告时间:2019年05月25日星期六09:30-10:30

邀请人:

报告摘要:

In many color image processing and recognition applications, one of the most important targets is to compute the optimal low-rank approximations to color images, which can be reconstructed with a small number of dominant singular value decomposition (SVD) triplets of quaternion matrices. All existing methods are designed to compute all SVD triplets of quaternion matrices at first and then to select the necessary dominant ones for reconstruction. This way costs quite a lot of operational flops and CPU times to compute many superfluous SVD triplets. In this paper, we propose a Lanczos-based method of computing partial (several dominant) SVD triplets of the large-scale quaternion matrices. The partial bidiagonalization of large-scale quaternion matrices is derived by using the Lanczos iteration, and the reorthogonalization and thick-restart techniques are also utilized in the implementation. An algorithm is presented to compute the partial quaternion singular value decomposition. Numerical examples, including principal component analysis, color face recognition, video compression and color image completion, illustrate that the performance of the developed Lanczos-based method for low-rank quaternion approximation is better than that of the state-of-the-art methods.

主讲人简介:

贾志刚 ,江苏师范大学教授、硕士生导师。2009年毕业于华东师范大学数学系,获理学博士学位。主要研究方向为数值代数与图像处理,至今已在SIAM J. Matrix Anal. Appl., SIAM J. Imaging Sci., J. Sci. Comput., Numer. Linear Algebra Appl.等国际知名期刊上发表学术论文30余篇,出版译著1部、教材1部,主持国家自然科学基金项目2项、省部级科研项目1项,参加国家和省自然科学项目4项。先后入选江苏师范大学“第一批高层次人才队伍后备人选”、“三育人先进个人”、“校先进工作者”等。曾经到英国曼彻斯特大学、香港浸会大学等高校数学系进行为期一年的访问。现兼职为中国高等教育学会教育数学专业委员会团体理事、江苏省工业与应用数学会理事、江苏省计算数学学会理事、美国SIAM正式会员,美国Math Review评论员,和SIMAX,Inverse Problem,Automatic等学术期刊的审稿人。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237