当前位置: 首页 > 学术活动 > 正文
Global Solutions to The Isentropic Compressible Navier-Stokes Equations with a Class Of Large Initial Data
时间:2017年06月12日 11:02 点击数:

报告人:方道元

报告地点:数学与统计学院615室

报告时间:2017年06月20日星期二16:00-17:00

邀请人:

报告摘要:

In this talk, we consider the global well-posedness problem of the isentropic compressible Navier-Stokes equations in the whole space RN with N _ 2. In order to better reflect the dispersive property of this system in the low frequency part, we introduce a new solution space that characterizes the behaviors of the solutions in different frequencies, and prove that the isentropic compressible Navier-Stokes equations admit global solutions when the initial data are close to a stable equilibrium in the sense of suitable hybrid Besov norm. As a consequence, the initial velocity with arbitrary ˙B norm of potential part P?u0 and large highly oscillating are allowed in our results. The proof relies heavily on the dispersive estimates for the system of acoustics, and a careful study of the nonlinear terms. This is the joint work with Ting Zhang and Ruozhao Zi.

 

主讲人简介:

方道元,浙江大学数学系教授、博士生导师、国际著名偏微分方程专家。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237