当前位置: 首页 > 学术活动 > 正文
Homoclinic and Heteroclinic Orbits and Bifurcation for a New Lorenz-Type System
时间:2010年06月19日 00:00 点击数:

报告人:李先义

报告地点:数学与统计学院三楼科学报告厅(317室)

报告时间:2010年06月22日(星期二)15:30-17:00

邀请人:

报告摘要:

In this talk, a new Lorenz-type system is introduced. The Lyapunov characteristic exponential of this system indicates that this system should have chaotic phenomenon. Numerical simulation illustrates this result which motivates us to further investigate its complex dynamical behaviors. The dynamical entities of its equilibria, such as the stability of the hyperbolic equilibria, the stability for the non-hyperbolic equilibrium, the degenerate pitchfork bifurcation, Hopf bifurcations and the local expressions of stable and unstable manifolds, etc, are first investigated in detail when the parameters are varied in the space of parameters. The existence or non-existence of homoclinic and heteroclinic orbits of this system is then rigorously proved.

主讲人简介:

李先义,深圳大学数学与计算科学学院教授,博士生导师;法国里尔科技大学数学系博士后。研究方向:微分差分方程,离散动力系统,生物数学等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237