当前位置: 首页 > 学术活动 > 正文
Asymptotics and stability of spiky steady states of the minimal chemotaxis model
时间:2013年07月02日 00:00 点击数:

报告人:王学锋

报告地点:数学与统计学院615室

报告时间:2013年07月09日星期二16:00-17:00

邀请人:

报告摘要:

Of concern is the fundamental "minimal" chemotaxis model. It is known that when the chemotaxis coefficient is large enough, the system has a monotone, spiky steady state. We obtain the asymptotics of the steady state when the chemotaxis coefficient goes to infinity; we then use this fine information about the structure of the spike to prove its stabillity. Techniques involved to achieve these goals are singular perturbation method, asymptotic analysis of a nonlocal eigenvalue problem and a homotopy trick that links the nonlocal eigenvalue problem to the linearized eigenvalue problem of the chemotaxis system.

主讲人简介:

美国Tulane大学数学教授,美国数学博士。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237