当前位置: 首页 > 学术活动 > 正文
Stability of Multidimensional Cylinder Fronts for Degenerate Fisher Type Equation
时间:2017年09月25日 09:04 点击数:

报告人:吴雅萍

报告地点:数学楼6楼大应用数学实验室

报告时间:2017年09月27日星期三11:00-12:00

邀请人:

报告摘要:

It's a joint work with Dr. Junfeng He. In this talk I shall talk about our recent work on the spatial decay and  stability of multidimensional  cylinder fronts  for the degenerate Fisher type equation. By applying the  generalized center manifold theorem  and asymptotic expansions we obtain the  spatial decay of traveling fronts with all speeds, especially  for the $p$-degree Fisher type equation  we get the precise algebraic decaying rates and the higher order expansion of  traveling fronts with non-critical speeds. By applying spectral analysis and sub-super solution method we prove the exponential stability  of all traveling fronts  in some exponentially weighted spaces and the   Lyapunov stability of traveling fronts with noncritical speeds in some polynomially weighted spaces.   We also investigate the  asymptotic behavior and spreading speed of the solution with more general initial data, which are proved to be solely determined by  the spatial decay   of the initial data at one end.

主讲人简介:

吴雅萍,首都师范大学数学学院教授、博士生导师、国际著名偏微分方程专家。 东北师范大学大应用数学实验室学术委员会委员。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237