Stability of symmetric Runge--Kutta methods for neutral delay integro--differential equations
报告人:赵景军
报告地点:数学与统计学院108室
报告时间:2018年03月15日星期四15:00-16:00
邀请人:
报告摘要:
The aim of this paper is to analyze the delay--dependent stability of symmetric Runge--Kutta methods, including the Gauss methods and the Lobatto IIIA, IIIB and IIIS methods, for the linear neutral delay integro--differential equations. By means of the root locus technique, the structure of the root locus curve is given and the numerical stability region of symmetric Runge--Kutta methods is obtained. It is proved that, under some conditions, the analytical stability region is contained in the numerical stability region. Finally, some numerical examples are presented to illustrate the theoretical results.
主讲人简介:
赵景军,哈尔滨工业大学理学院数学系教授、博士生导师。主要从事微分方程的数值计算、积分方程的数值计算等方面的研究。主持或参与国家自然科学基金项目3项,国防预研项目1项。在SIAM J Numer Anal, J Sci Comput, Appl Math Model, Appl Math Lett, Appl Numer Math, Numer Algor等国际刊物发表SCI论文近50篇。获黑龙江省自然科学技术二等奖一项,中国高校自然科学技术二等奖一项。中国仿真学会仿真算法专业委员会委员。