当前位置: 首页 > 学术活动 > 正文
Semi-supervised learning for partially labeled network
时间:2018年06月04日 15:10 点击数:

报告人:荆炳义

报告地点:数学与统计学院403室

报告时间:2018年06月05日星期二10:30-11:30

邀请人:

报告摘要:

For a given network, some nodes have been labeled into several groups (e.g., good/bad). It would then be of interest to label the rest of the nodes, based on the network information and partially labeled nodes. In this paper, we propose a semi-supervised learning method, by using so-called information prorogation. The method has very good performance in many settings, and is particularly effective in handling unbalanced and/or sparse network.

主讲人简介:

荆炳义教授是香港科技大学数学系教授、统计科学中心主任、悉尼大学博士,教育部长江学者,国家自然科学基金二等奖获得者。在各类国际学术期刊上,荆教授发表了百余篇论文,被引用次数超过2000次,在统计学顶级期刊Annals of Statistics、Biometrika、JASA、JRSSB以及计量经济学期刊Journal of Econometrics上发表论文20多篇。Journal of Business & Economic Statistics等国际SCI杂志的副主编。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237