当前位置: 首页 > 学术活动 > 正文
What is an affine Kac-Moody Lie algebra?
时间:2017年05月22日 10:14 点击数:

报告人:Arturo Pianzola

报告地点:数学与统计学院317室

报告时间:2017年05月25日星期五16:00-16:45

邀请人:

报告摘要:

This talk is intended for a general algebra audience. No knowledge of infinite dimensional Lie theory is needed, and the affine algebras are an ”excuse” to discuss, mostly by concrete examples, a bridge between infinite dimensional Lie theory and SGA3. The title of this talk is (intentionally) misleading: Kac-Moody Lie algebras did not exist in 1963. That said, over the last decade substantial results on infinite dimensional Lie theory have been proven using the theory of reductive group schemes developed by Demazure and Grothendieck in SGA3. One can therefore ask, a posteriori, what are the affine algebras in the language of SGA3. It is an intriguing question with an elegant answer that naturally leads to a (new) family of infinite dimensional Lie algebras related to Grothendieck’s dessins d’enfants.

主讲人简介:

Arturo Pianzola教授是加拿大阿尔伯塔大学数学与统计系的主任,在American Journal of Mathematics 、Memoirs of the American Mathematical Society 、Advances in Mathematics、Journal of the European Mathematical Society、Communications in Mathematical Physics 、Trans. Amer. Math. Soc、Transformation Groups、Journal of Algebra等重要期刊发表60余篇论文。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237