Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems
报告人:肖爱国
报告地点:数学与统计学院317室
报告时间:2014年07月15日星期二09:00-10:00
邀请人:
报告摘要:
Based on W-transformation, some parametric symplectic partitioned Runge–Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau and Lobatto IIIA–IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α* such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.
主讲人简介:
肖爱国,教授,博士生导师,理学博士,湘潭大学数学与计算科学学院副院长,科学工程计算与数值仿真湖南省重点实验室副主任、学术委员会委员。研究方向涉及刚性微分方程及微分代数方程数值方法、动力系统保结构算法、分数阶微分方程数值算法、高振荡问题数值方法等。