当前位置: 首页 > 学术活动 > 正文
On structure testing for component covariance matrices of a high-dimensional mixture
时间:2017年02月23日 10:10 点击数:

报告人:李卫明

报告地点:数学与统计学院四楼报告厅

报告时间:2017年02月24日星期五15:30-16:30

邀请人:

报告摘要:

By studying the family of p-dimensional scaled mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix does not converge to the celebrated Marcenko-Pastur law. A different and new limit is found and characterized. The reasons of failure of the Marcenko-Pastur limit in this situation are found to be a strong dependence between the p-coordinates of the mixture. Next, we address the problem of testing whether the mixture has a spherical covariance matrix. It is shown that the traditional John’s test and its recent high-dimensional extensions both fail for high-dimensional mixtures, precisely due to the different spectral limit above. In order to find a remedy, we establish a novel and general CLT for linear statistics of eigenvalues of the sample covariance matrix. A new test using this CLT is constructed afterwards for the sphericity hypothesis.


主讲人简介:

李卫明博士毕业于东北师范大学,现任教于上海财经大学统计与管理学院;主要研究方向为随机矩阵理论和高维数据分析。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237