当前位置: 首页 > 学术活动 > 正文
非线性矩阵方程的研究
时间:2012年09月18日 00:00 点击数:

报告人:陈果良

报告地点:数学与统计学院317

报告时间:2012年9月21日 10:00-11:00

邀请人:

报告摘要:

We derive some necessary and sufficient conditions for the existence of an Hermitian positive definite solution. We mainly consider its solvability conditions and the question that under which conditions the nonlinear equation has only two different Hermitian positive definite solutions. Then we give a sufficient condition for the nonlinear equation to have only two different HPD solutions and obtain the formulae for these solutions. In addition, we consider the nonlinear equation with the case . We derive a necessary condition on the spectral radius of for the existence of a Hermitian positive definite solution and present some new properties of the solutions.

主讲人简介:

陈果良,男,华东师范大学教授,博士生导师,理学博士。研究方向:数值代数。主持国家自然科学基金和上海市科委重点基金等项目。已发表学术论文110余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237