The Bargmann transform is a unitary operator from L2(R) onto the Fock space F2 of Gaussian integrable entire functions on the complex plane. Under the Bargmann transform, many classical operators on L2(R) take fascinating new forms on the Fock space. The talk will begin with several examples of operators on L2(R), including the Fourier transform, the Hilbert transform, annihilation operators, and creation operators. Motivated by the Hilbert transform, we will then define singular integral operators on the Fock space, examine several examples, formulate a conjecture about the boundedness of singular integral operators on F2, and present recent progress on the conjecture.
美国纽约洲立大学奥尔巴尼分校(State University of New York at Albany)数学与统计系教授,曾担任该系系主任。1982年1月在国防科技大学毕业后留学美国,1986年获得博士学位。 目前已出版5部高水平著作,其中3部是国际上数学专业研究生的标准教材(GTM199,GTM226,GTM263),另外MSM138在国内外很多高校选作分析方向研究生的标准教材,产生了广泛的影响。发表100多篇高水平学术论文,是国际分析数学领域著名的数学家。2004年12月并被聘为汕头大学讲座教授。