A Linearized Inverse Boundary Value Problem in Elasticity with Transversally Isotropic Perturbations
报告人:杨扬
报告地点:数学与统计学院二楼会议室
报告时间:2019年05月28日星期二15:30-16:30
邀请人:
报告摘要:
We consider a linearized inverse boundary value problem for the elasticity system. From the linearized Dirichlet-to-Neumann map at zero frequency, we show that a transversely isotropic perturbation of a homogeneous isotropic elastic tensor can be uniquely determined. From the linearized Dirichlet-to-Neumann map at two distinct positive frequencies, we show that a transversely isotropic perturbation of a homogeneous isotropic density can be identified as well. This is based on joint work with Jian Zhai.
主讲人简介:
杨扬,美国密西根州立大学副教授,博士毕业于华盛顿大学,主要从事耦合物理,Lorentzian几何中的反问题。近年来于 Math. Ann. , SIAM J. Math. Anal. Anal. PDE, J. Differential Equations , Inverse Problems 等国际权威杂志发表论文发表论文20余篇。