当前位置: 首页 > 学术活动 > 正文
欧氏空间之间的满射, 重积分换元公式和Brouwer不动点定理
时间:2018年06月20日 13:45 点击数:

报告人:刘轼波

报告地点:逸夫教学楼401室

报告时间:2018年06月21日星期四15:30-17:00

邀请人:

报告摘要:

在第一部分, 我们在较弱条件下得到关于欧氏空间之间映射的满射性定理, 它推广了经典结果: 设-映射的Jacobi行列式处处非零, 且在x的绝对值趋于无穷的时候,f(x)的绝对值也趋于无穷,是满射. 由此, 我们给出代数基本定理的新证明. 推广到微分流形上, 我们有: 紧流形上的向量值函数必有无穷多个临界点.

在第二部分, 我们假设-重积分的换元公式成立, 从而利用超曲面的参数方程用-重积分定义曲面积分并建立-维散度定理, 然后用散度定理给出-重积分换元公式的新证明. 对于好的区域, 我们的证明只要求换元映射是区域边界的微分同胚, 于是作为推论我们立刻得到-维的Brouwer不动点定理.

最后, 我们简单地讨论余面积公式及其应用. 这个报告的主要内容只用到多元微积分和线性代数的知识.

 

主讲人简介:

刘轼波, 男, 1975年生于广东. 在兰州大学获得学士和硕士学位后, 到中科院数学所学习, 于2003年获得博士学位. 2005年从北京大学数学研究所博士后出站, 到厦门大学任副教授. 2008年任汕头大学教授, 2011年任厦门大学教授. 现为厦门大学数学系教授、博士生导师. 先后主持国家自然科学基金青年项目和面上项目, 以及福建省杰出青年基金项目. 2013年入选意大利国际理论物理中心(ICTP)协联成员, 2017年受国家留学基金委资助到美国圣母大学访问一年. 他的研究领域是非线性泛函分析、非线性偏微分方程的变分方法。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237