Semidefinite Programming Relaxation for Robust L1-norm Principal Component Analysis
报告人:刘力军
报告地点:数学与统计学院104室
报告时间:2018年05月12日星期六18:30-19:30
邀请人:
报告摘要:
Classical principal component analysis (PCA)aims to find low dimensional linear subspace spanned by principal eigenvectors through maximizing variance derivation. The objective of robust L1-norm PCA (L1-PCA) is to maximize the L1-norm variance in feature space. One downside of L1-PCA is that finding a global solution of L1-norm PCA is still intractable. In this talk, we transform L1-PCA into an equivalent integer quadratic program, which is NP-complete.We present a simple semidefinite programming (SDP)relaxation for obtaining a nontrivial upper bound on the optimal value of the equivalent problem, from which an approximate solution is obtained.The effectiveness of the method is shown for numerical probleminstances of various sizes.
主讲人简介:
刘力军,大连民族大学数学系副教授,硕士生导师,本科和硕士毕业于河北大学数学系,博士毕业于大连理工大学应用数学系,主持完成国家自然科学基金,中央高校基本科研业务费,辽宁省教育厅优秀人才支持计划等,目前在Neurocomputing, Nerual Computation, Physica A等主流期刊上发表SCI论文10余篇,主要研究兴趣有神经网络、低秩分解、稀疏学习、凸优化理论等。