当前位置: 首页 > 学术活动 > 正文
Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features
时间:2017年06月21日 14:09 点击数:

报告人:安百国

报告地点:数学与统计学院4楼重点实验室报告厅

报告时间:2017年06月23日星期五10:00-11:00

邀请人:

报告摘要:

Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high-dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to identify the clique sets correctly with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are not useful for classification, and whose strong sure screening property can be guaranteed. Finally, a clique naive Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.

主讲人简介:

安百国,首都经济贸易大学统计学院讲师,2012年博士毕业于东北师范大学数学与统计学院,师从郭建华教授;2013-2015年先后在北卡罗来纳大学统计与运筹系、生物统计系进行博士后访问,2012-2016年在首都经济贸易大学统计学院做博士后工作,合作导师是纪宏教授。主要的研究兴趣包括回归压缩与选择、机器学习、超高维数据分析、文本挖掘和神经影像学分析等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237