当前位置: 首页 > 学术活动 > 正文
2D特征值问题的理论及计算
时间:2019年06月03日 10:08 点击数:

报告人:苏仰锋

报告地点:数学与统计学院二楼会议室

报告时间:2019年06月10日星期一10:00-11:00

邀请人:

报告摘要:

The 2D eigenvalue problem (2dEVP) is a class of the double eigenvalue problems first studied by Blum and Chang in 1970s. The 2dEVP seeks real scalars $\lambda, \mu$,

and a corresponding vector $x$ satisfying the following equations

\begin{align*}

Ax & = \lambda x + \mu Cx,\\

x^H C x &=0, \\

x^H x &=1,

\end{align*}

where $A$ and $C$ are Hermitian and $C$ is indefinite. We show the connections between 2dEVP with well-known numerical linear algebra and optimization problems such as quadratic programming, the distance to instability and $H_{\infty}$-norm. We will discuss (1) fundamental properties of 2dEVP including well-posedness, types and regularity, (2) backward error analysis and numerical algorithms.

 

主讲人简介:

苏仰锋,复旦大学数学科学学院教授。研究兴趣:数值代数,科学计算。曾获2012年度上海市自然科学一等奖(第一完成人)。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237