当前位置: 首页 > 学术活动 > 正文
Some results of Hamiltonian homeomorphism on aspherical closed surfaces
时间:2017年06月12日 13:59 点击数:

报告人:王俭

报告地点:数学与统计学院403室

报告时间:2017年06月15日星期四10:00-11:00

邀请人:

报告摘要:

On closed symplectically aspherical manifolds, Schwarz proved a classical result that the action function of a nontrivial Hamiltonian diffeomorphism is not constant by using Floer homology.In this talk, we generalize Schwarz's theorem to the C^0-case on closed aspherical surfaces (i.e., closed oriented surfaces with genus more than 1). As an application, we prove that the contractible fixed points set (and consequently the fixed points set) of a nontrivial Hamiltonian homeomorphism is not connected. We also get a similar result of an area and orientation preserving homeomorphism of the 2-sphere by applying Brouwer plane translation theorem. Furthermore, we can prove a general version of C^1-Zimmer's conjecture based on the C^0-Schwarz's theorem.

 

主讲人简介:

王俭,博士毕业于法国巴黎第十三大学,现为马克斯普朗克研究所与南开大学陈省身数学研究所联合博士后。主要从事动力系统、遍历理论和辛几何的研究。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237