A New Method for Computing $\varphi$-functions and Their Condition Numbers of Large Sparse Matrices
报告人:吴钢
报告地点:数学与统计学院104室
报告时间:2016年10月15日星期六10:00-11:00
邀请人:
报告摘要:
We propose a new method for computing the $\varphi$-functions of an $n$-by-$n$ large sparse matrix with low rank or with fast decaying singular values. The key is to reduce the computation of $\varphi_{\ell}$-functions of a large matrix to $\varphi_{\ell+1}$-functions of some small matrices of size $r$-by-$r$, where $r$ is the numerical rank of the large matrix in question. For storage, the new method only needs to store two $n$-by-$r$ sparse matrices and some $r$-by-$r$ matrices, rather than some $n$-by-$n$ possibly dense matrices. The error analysis on the proposed method is given. Based on the new method, we then propose two novel strategies for estimating the 2-norm condition numbers of the $\varphi$-functions of large matrices. Numerical experiments illustrate the numerical behavior of the new algorithms and show the effectiveness of our theoretical results.
主讲人简介:
吴钢,中国矿业大学数学学科教授,博士生导师,主要研究方向:大规模科学与工程计算、数值代数。1994年9月-1998年7月就读于山东大学数学与系统科学学院计算数学及其应用软件专业,获理学学士学位;1998年9月-2001年7月就读于大连理工大学应用数学系,获理学硕士学位;2001年9月-2004年7月就读于复旦大学数学研究所,获理学博士学位。
先后主持国家自然科学基金项目3项,入选江苏省“青蓝工程”中青年学术带头人、江苏省“333工程中青年科学技术带头人。现为“江苏省数学会计算数学分会”副理事长。 在国际知名期刊SIAM Journal on Numerical Analysis,SIAM Journal on Scientific Computing,SIAM Journal on Matrix Analysis and Applications,ACM Transactions on Information Systems,Data Mining and Knowledge Discovery,Pattern Recognition,Journal of Scientific Computing,Advances in Computational Mathematics, Numerical Linear Algebra with Applications 上发表学术论文多篇。