Invariants of Finite Groups Generated by Generalized Transvections in the Modular Case
报告人:南基洙
报告地点:数学与统计学院317室
报告时间:2016年11月05日星期六16:00-16:50
邀请人:
报告摘要:
In this talk, we investigate the invariant rings of two classes of finite groups $G\leq GL(n,F_q)$ that are generated by a number of generalized transvections with invariant subspaces $H$ over a finite field $F_q$ in the modular case. We name these groups by generalized transvection groups. The one class is concerned with a given invariant subspace which is involved several roots of unity. Constructing quotient group and tensor, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other one is concerned with different invariant subspaces which have same dimension. We provide a classification of these groups and illustrate their invariant rings in detail.
主讲人简介:
南基洙,大连理工大学数学科学学院教授,博士生导师。博士毕业于哈尔滨工业大学数学系,曾在吉林大学数学科学学院从事博士后研究。多次出国访问并从事合作研究。现为Z. Math.,评论员. Math. R.,评论员, 中国高等教育学会教育数学专业委员会常务理事。主要研究方向为群的不变式理论、典型群和代数K-理论、矩阵几何学、编码学和实验设计等,主持和参与多项国家和省部级科研项目,发表多篇SCI论文,出版多部著作。