报告人:狄振兴
报告地点:人民大街校区数学与统计学院317室
报告时间:2026年01月17日星期六10:00-11:00
邀请人:扶先辉
报告摘要:
Given a regular and normal element ω in an associative ring A, we study model structures on the category F(A; ω) of module factorizations. Explicitly, we define the homotopycategory of module factorizations and realize it as the homotopy category of a certain exact model structure. Furthermore, we construct three abelian model structures on F(A; ω) via the one on the category of left A-modules, and show that the zeroth cokernel and kernel functors induce Qullien equivalences. Some applications of these results in Gorenstein homological algebra are also described. This talk is based on a joint work with Liping Li, Li Liang and RongminZhu.
主讲人简介:
狄振兴,华侨大学教授、博士生导师、福建省“闽江学者”特聘教授。主要从事模型范畴理论、相对同调理论与代数表示论等领域的相关研究工作。迄今,在《Transactions of the American Mathematical Society》《Proceedings of the Royal Society of Edinburgh. Section A. Mathematics》《Journal of Algebra》《Journal of Pure and Applied Algebra》等期刊发表论文30余篇,并主持国家自然科学基金青年基金项目和面上项目。