当前位置: 首页 > 学术活动 > 正文
Solutions with one dimensional concentration for a two dimensional Gross-Pitaevskii model with general potential
时间:2026年01月04日 10:54 点击数:

报告人:杨军

报告地点:人民大街校区数学与统计学院二楼会议室

报告时间:2026年01月08日星期四10:00-11:00

邀请人:常小军

报告摘要:

We study a Gross-Pitaevskii equation with a trap potential under the unit mass constraint, which is used to describe Bose-Einstein condensates with attractive interaction. First, we provide some necessary conditions for the existence of a solution concentrating at a curve. Next, under stationary and non-degeneracy assumptions on the curve with respect to an auxiliary weighted length involving the trap potential, we construct a solution with concentration directed along the curve, provided that the parameter $-\lambda \to +\infty$. Our result improves upon very recent results by Q. Guo, S. Tian and Y. Zhou in Calc. Var. Partial Differential Equations (Vol. 61, 2022, no. 2), which relied heavily on the radial symmetry assumption of the trap potential. This is a joint work with Lipeng Duan and Suting Wei.

主讲人简介:

杨军,广州大学数学与信息科学学院教授,博士生导师。主要从事数学领域中非线性分析的研究,用非线性泛函分析中的变分方法、约化理论来研究具有相关应用和理论背景的非线性问题,比如物理学中描述Bose-Einstein凝聚的Gross-Pitaevskii方程,描述相变现象的Allen-Cahn方程以及具有几何背景的Shrödinger map方程和wave map方程。杨军教授在以上问题的爆破解、涡旋解、预定集中曲线/曲面解的构造等方面做出了一系列重要成果,得到国际同行的广泛引用和高度认可。 主要成果发表在Geom. Funct. Anal.、J. Math. Pures Appl.、Tran. Amer. Math. Soc.、Comm. PDEs、J. Funct. Anal., Cal. Var. PDEs、SIAM J. Math. Anal.等国际数学一流刊物上。主持和参与多项国家自然科学基金面上项目、重点项目。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn